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Abstract. In the field of computer graphics, path tracing is a widely used technique for generating photorealistic

images. The technique is based on Monte Carlo methods and random sampling is used in the solution of the

rendering equation. Therefore, the quality of the output images is dependent on the number of samples used in

the rendering operation. It may become noisy if a sufficient number of samples is not provided in the computation

and it may converge slowly as the number of samples is increased. In order to overcome this problem, researchers

came up with the idea of adaptive sampling and using a denoising filter as a post-processing technique. This

paper analyzes state-of-the-art studies focusing on these subjects. It also examines the limitations and challenges

that can be seen in such applications. Finally, some of the open-research areas for further investigation has been

mentioned.
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1 Introduction

Monte Carlo path tracing is a technique that offers a general solution for simulating the light
behavior in the rendering process. In parallel to the improvements in the hardware and software
technology and its nature of physically-based simulation of the sample scenes, the popularity of
path tracing is increasing in the computer graphics based applications. However, the technique is
based on Monte Carlo methods which employ random sampling in the solution of the rendering
integral (Kajiya, 1986). Therefore, the quality of the output images depends on the number
of samples used in the computation. In other words, using a low number of samples in the
computation may lead to noisy pixels whereas an increase in the number of samples may lead
to a slow computational convergence rate which creates performance problems. This bottleneck
leads researchers to study alternative solutions. These studies can be classified in two groups:
adaptive sampling and denoising filtering methods (Delbracio et al., 2014).

The adaptive sampling methods follow the idea of choosing locally adapted samples with
the characteristics of the processed computation. Therefore, it becomes easier to compute the
rendering integral with better positioned samples and new samples are added only when it is
necessary in the computation. This approach minimizes the required number of samples which
results in reduced execution time. Hence, we can say that adaptive sampling methods take
action during the rendering operation. A number of studies follow this strategy to improve the
quality of the path traced scenes (Soler et al., 2009; Egan et al., 2011b; Lehtinen et al., 2011;
Herholz et al., 2016).

Denoising filtering methods can be classified as post-processing strategies. Basically, these
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methods use the information gathered during the rendering process and then apply a filtering
procedure to remove noisy pixels on the image space. The simpler models use pixel color and
neighborhood information where more complex models take sampling information into consid-
eration (Delbracio et al., 2014; Rousselle et al., 2012). Moreover, it is possible to combine these
strategies and a generalized model can be proposed using the advantages of both approaches.
By tracking the sample information and combining it with the pixel color information, a more
robust model can be built resulting in higher accuracy in the output image.

Furthermore, the emerging trend of using machine learning algorithms is also addressed
in the denoising procedure. Using convolutional neural networks (CNN) for kernel prediction
(Bako et al., 2017) or interactive auto-encoding (Chaitanya et al., 2017) are some of the exam-
ples that can be given in this group. Some studies also focus on deep compositing adding the
depth information compared to flat images. The main motivation behind such approaches relies
on the limitations of denoising capability and inability to provide a general solution for light
transport effects.

Adaptive sampling and denoising filtering methods are widely used in the industry. Pixar’s
RenderMan is an example in the movie industry that uses new statistical adaptive sampling
metrics for generating high quality images with less effort and this idea has been used in the
production of Toy Story 4 (RenderMan22.5, 2019; fxguide, 2020). Gaming or medical imaging
industries are other fields looking for adaptive sampling and denoising filtering based solutions.
Gaming industries are interested in techniques that enables generating high quality images with
low samples (Kuznetsov et al., 2018), and medical imaging companies use these methods in the
evaluation of Magnetic Resonance Images (MRIs) (Russo, 2010).

In this work, state-of-the-art adaptive sampling and denoising filtering methods are investi-
gated. In addition, the challenges of having a general denoising filter for a wide range of effects
or the problem of representing complex effects are addressed in this study. Finally, this paper
offers some solutions for further investigation that can be followed representing complex effects.

2 Analysis of Adaptive Sampling and Denoising
Filtering Methods

This section contains two subsections related to the work improving Monte Carlo rendering
process. In the first subsection, the work on adaptive sampling methods is analyzed. In the
second subsection, we analyze denoising filtering methods.

2.1 Adaptive Sampling

In traditional Monte Carlo path tracers, a fixed number of samples per pixel was traced in the
applications. However, each part of the scene does not have the same complexity where some
parts may need fewer samples and some may need more samples to converge in the computation.
Therefore, adaptive sampling strategy emerged to prevent this waste. The idea behind this
method is using minimum number of samples per pixel, and increase the number of samples only
for the parts that have a contrast value above the initially defined threshold value. Although
the metrics and evaluation techniques may vary for different samplers, the general workflow is
visualized as a diagram in Figure 1 given by RenderMan22.5. (2019).

Adaptive sampling methods have been studied by researchers for a long period of time. An
earlier work which inspired researchers in this field is the work of Mitchell (1987)(Zwicker et al.,
2015). In this study, Mitchell describes an antialiasing module to define the sampling procedure
considering the noise perception. Ward et al. (1998) proposed a greedy irradiance caching algo-
rithm for interpolating irradiance values in ray tracing applications. Painter & Sloan (1989) and
Guo (1998) followed progressive refinement for sampling the image plane. Other earlier research
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Figure 1: The general flowchart of the adaptive sampling methods (RenderMan22.5., 2019).

can be given as Bolin & Meyer (1998) which defines a metric for the sample distribution and
represents a Haar wavelet transform of the data to be used for image synthesis.

Recently, more advanced approaches have been proposed in adaptive sampling that can pre-
serve the quality of the images without reducing the number of samples to be used in the path
tracing computation. These works are based on analyzing the local light transport equations
or controlling the sample information provided by the Monte Carlo rendering operation. As a
pioneer work, Durand et al. (2005) made an analysis of local frequencies of light transport con-
sidering individual rays. Similar work was followed by Levin et al. (2009); Wetzstein et al. (2011)
for computational cameras and light field displays. In the work of Hachisuka et al. (2008), a
multidimensional adaptive sampling strategy was proposed in which the samples are distributed
in the full sampling domain. This work inspired many other research studies that work in higher
dimensional space. However, it ignores the underlying effects resulting in less quality in the final
image. Moreover, the consideration of more effects leads to higher dimensions which become
computationally inefficient. As a significant study, Overbeck et al. (2009) adaptively distributed
samples in the image space considering the variance of the samples performing a wavelet analysis
of the final image. After this process, the image is reconstructed using an appropriate wavelet
approximation.

The effects of depth of field, motion blur, soft shadows and directional occlusions were
also performed using adaptive sampling methodology (Soler et al., 2009; Egan et al., 2009;
Egan et al., 2011a; 2011b. Ringing artifacts caused by sampled wavelets was addressed by
Rousselle et al. (2011) that introduces a distribution of new samples for minimizing the mean
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squared error. An example ”sibenik” scene was denoised using their algorithm and shown in
Figure 2. Lehtinen et al. (2011) exploited light field shearing handling soft shadows and motion
blurs. Some interactive methods have been proposed considering the reconstruction scheme that
can be given as Mehta et al. (2014); Yan et al. (2016) presenting axis-aligned and 4D sheared
filtering, which are computationally efficient. However, these approaches are lacking in rep-
resenting some of the rendering details. Herholz et al. (2016) integrated importance sampling
with the bidirectional scattering distribution function (BSDF) that gives better convergence in
scenes with complex illumination. Vorba & Křrivánek (2016) estimated the expected contribu-
tion of a light path using Russian Roulette and splitting techniques. Müller et al. (2017) used
a combined data structure of spatial and directional domain to represent importance sampling
for simulating caustics. A final work in this section is the work of Huo et al. (2020) which used
an offline dataset of adaptive samples and reconstructs the incident radiance field using deep
reinforcement learning.

For further analysis on adaptive sampling, Zwicker et al. (2015) presented a comprehensive
study covering adaptive sampling based studies and applications which can be viewed for more
information.

Figure 2: Rousselle et al. (2011) visualized post-processing procedure using a 2D ”sibenik” scene
example showing the stopping map from scale 2 to 3. The input data consists of 32 noisy samples

per pixel (left) and the post-processed image does not lose features (middle) compared to the
reference image (right) shared in the figure.

2.2 Denoising Filtering

Denoising filters are the approaches that are performed as a post-processing strategy. The idea
is to use the information gathered from the rendering process and employ a direct reconstruc-
tion scheme for removing the noisy pixels in the final image. The flowchart of this process is
shown in Figure 3. Denoising filters are very popular due to their mathematical simplicity and
efficiency. The majority of these filters can be stated as general bilateral filters (Paris et al.,
2007; Delbracio et al., 2014). However, the complexity of each denoising filter depends on the
information that it is processing, which may differ from one to another. It is also a fact that
some filters operate at pixel level and some of them use the additional sampling information
provided by the renderer. This also changes the complexity of the proposed approach which is
also discussed in this subsection.

As denoising filters are applied on image space, there is a number of quality metrics that can
be used in the evaluation of the denoised images. Popularly used metrics can be named as Mean
Squared Error (MSE), peak-signal-to-noise ratio (PSNR) or signal-to-noise ratio (SNR) which
are also commonly used by researchers (Zhang et al., 2012). MSE computes the L2 norm of the
arithmetic difference between the reference and test image. It is stated that PSNR is more useful
than MSE when we have a set of dynamic ranged images. However, PSNR is still closely related
with MSE and both of the metrics cannot perform to evaluate content-dependent variations. On
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the other hand, SNR is taking mean of the intensities into consideration. However, SNR also fails
to evaluate the image quality accurately in many cases. In addition, none of these metrics are
capable of evaluating filters with contrast enhancement. Therefore, researchers have proposed
other metrics for better evaluation of the filters. One of these metrics is Homogeneity Mean
Difference (HMD) which includes the components of edge value, standard deviation and entropy
in the characterization of the evaluation process. These components define the homogeneity
of the test image and the metric can accurately evaluate the quality image as well as complex
effects which were ignored by the popular metrics (Zhang et al., 2012). Nevertheless, different
metrics can perform better in different conditions. As a result, it is important to choose the
most appropriate metric for the specified process.

Figure 3: The general flowchart of the denoising filtering methods (Delbracio et al., 2014)

An earlier work classified in this group is presented by Lee & Redner (1990) that defines an
alpha trimmed filter. Jensen & Christensen (1995) proposed using Gaussian or median filters
for the light diffusely reflecting multiple times. Choudhury & Tumblin (2003) introduced a
trilateral filter and Xu & Pattanaik (2005) presented a classical bilateral image filter. The
common property of these approaches is acting at pixel level and they are similar to the filters
that have been widely used in the image processing field.

There are also denoising filters that operate at pixel level but include analysis of the sample
information. Earlier examples are the work of Rushmeier & Ward (1994) which introduced
image space nonlinear filters and McCool (1999) that introduced using anisotropic diffusion in
the denoising operation. Dammertz et al. (2010) presented a real time filter which used wavelet
transforms to acquire denoising. A bilateral filter containing weights of gradients were proposed
by Xu et al. (2011).

A more complex group of filtering algorithms relies on using additional statistical information
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to filter the sample values. The members of this group can produce more qualified images than
the previous groups. However, the complexity also increases due to the processed information.
Shirley et al. (2011) presented a denoising filter considering the noise in motion blurred regions.
A pioneer work in this group is proposed by Sen & Darabi (2012). Sample information and the
scene features are processed in their work and their algorithm can denoise images even at low
sample rates. However, the complexity of the algorithm becomes huge especially when larger
number of samples are used in the filtering. There are also other approaches that handle the
information gathered from auxiliary buffers (Li et al., 2012; Rousselle et al., 2013; Moon et al.,
2017).

Another approach is using leveraging statistics which may include histograms and covari-
ance matrices. Rousselle et al. (2012) presented a non-local means filter that determines the
weight based on the patch similarity of the neighboring pixels. Delbracio et al. (2014) followed
a similar approach in which sample histograms are stored during the rendering process and the
patch similarity is computed by chi-square test which defines the difference of these histograms.
According to their statements, this approach improves the results compared to non-local means
filtering. Boughida & Boubekeur (2017) combined the histogram based filtering with non-local
bayes filtering to improve denoising quality. As a pioneer work, Bitterli et al. (2016) proposed a
novel approach that combines the individual elements from the subset of algorithms that they
have chosen. Apart from these work, a number of notable studies have been proposed including
estimation of gradients for temporal filtering (Schied et al., 2018), adaptive polynomial render-
ing (Moon et al., 2016) and a real time spatio-temporal filtering framework that is built on a
hybrid ray tracer (Mara et al., 2017). Mara et al. (2017) also provided an interesting compar-
ison scene that shows the results of the approaches that leverage statistical information which
can be seen from Figure 4. Mara et al. (2017) presented that, the livingroom scene was denoised
with 4 different approaches. The upper left image is the result of their proposed approach, the
upper image was the output of Bitterli et al. (2016), and the bottom images were denoised by
the approaches of Rousselle et al. (2012) (left) and Moon et al. (2014) (right). According to
their results, the scene was rendered with a resolution of 1280x720x16 and the fastest approach
was their work (ending in 0.31 seconds). Other images were denoised in 58 (Rousselle et al.,
2012), 50 (Moon et al., 2014) and 119 (Bitterli et al., 2016) seconds, respectively. For further
information about the quality metrics, the study of Mara et al. (2017) can be viewed.

A number of studies have been proposed using learning based strategies. Neural networks
and deep learning algorithms were employed for enabling the learning process (Kalantari et al.,
2015; Bako et al., 2017; Chaitanya et al., 2017; Xu et al., 2019; Gharbi et al., 2019; Huo et al.,
2020). Another interesting approach is based on deep images which include the depth data
compared to standard flat images. Vicini et al. (2019) presented a combined model of a flat
image space non-local means filter with a deep cross bilateral filter which is an example study
of this group.

For more information, the study of Goyal et al. (2020) can be viewed which covers the latest
approaches proposed in the field of denoising filtering covering applications in various domains.

3 Challenges in Monte Carlo Denoising

As it can be seen from previous sections, Monte Carlo Denoising approaches have attracted
the interest of researchers for a long period of time. Many models have been proposed in this
manner, that try to find a general solution for complex effects in path tracing applications.
Nevertheless, denoising is still an open research area since the proposed models in the literature
is either computationally inefficient or they are not compatible with some of the complex effects.
Moreover, the attraction of the researchers shifted towards robustness in order to produce accu-
rate results without losing any rendering information and also achieving an acceptable efficiency
at the same time (Vicini et al., 2019).
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(a) Noisy ”livingroom” input scene (b) Denoised image by 4 state-of-the-art methods

Figure 4: Denoising the sample ”livingroom” image using 4 different methods proposed in the
literature (Mara et al., 2017; Bitterli et al., 2016; Rousselle et al., 2012; Moon et al., 2014).
According to the results, the work of Mara et al. (2017) is superior compared to others.

The Monte Carlo path tracing algorithm is based on the solution of the rendering integral
proposed by Kajiya (1986):

L (x, ωo) = LE (x, ωo) + LR (x, ωo) (1)

LR (x, ωo) =

∫
Ω
ρ (x, ωo, ωi)L (x, ωi) cos θdωi (2)

In eq (1), L represents the outgoing radiance which is the sum of the emitted radiance (LE)
and the reflected radiance (LR). Therefore, the rendering equation defines how the light is
transported in the scene by defining the amount of energy being reflected and emitted based
on the material properties. In the computation of LR, we use bidirectional scattering distri-
bution functions (BRDFs) which is represented as ρ on the hemispherical domain Ω in eq (2)
(Herholz et al., 2016). In path tracing applications, each light path is built by sampling ωi

considering a probability density function (pdf) p where p : Ω → R. As a result, LR can be
estimated as:

L′
R =

ρ (x, ωo, ωi)L (x, ωi) cos θ

p (ωi)
(3)

The need for denoising approaches is related with the convergence rate of the Monte Carlo
integration. The integration is solved in the rendering process and the integration can only
converge when an appropriate number of samples are provided for the operation. Otherwise,
the output image contains noisy pixels as it was previously explained. Considering eq (3), we
can say that p should match the integrand in the ideal case, which would be dependent on
the estimator having minimal variance value (Herholz et al., 2016). Therefore, if the p value is
not close to the optimal value, there is a need for more samples in the computation or a post-
processing operation for taking the average of neighboring pixels to replace it with the noises in
the image space.

The main objective of the denoising approaches is to solve this problem without sacrificing
from the performance. According to the effects focused in the rendering, different approaches can
be suitable for this process. However, the complexity increases rapidly when complex effects are
simulated. In addition, adaptive sampling and post-processing methods have different drawbacks
which may result in blurs and artifacts. Therefore, the trend in this field is to present novel
approaches including learning based algorithms and deep compositing.

Another problem is the parametrization of the proposed approach. For state-of-the-art work,
these parameters are manually set for each task. It is also a fact that optimizations may be
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needed to be performed in the test cases. Consequently, the flexibility of these models is in
debate.

It is also important that, especially for the post-processing based approaches, the rendering
information gathered from the rendering process is crucial in the denoising operation. The capa-
bility of the algorithm depends on this data, which is used to define similarities and differences
between the patches that will be used to denoise the noisy pixels. Therefore, the details of the
rendering framework also becomes important since any missing data may lead to loss after post-
processing. An example can be the case where depth of field effect is focused. In this case, the
depth of field introduces noise in the GBuffer, and computing a GBuffer may lead to unrealistic
results at the end (Boughida & Boubekeur, 2017).

The solution of these problems may be solved using learning based approaches. With the
increasing capability of machine learning and deep learning algorithms, it is possible to learn the
image and direction spaces as well as guiding the operation for better sampling. It is also im-
portant to provide an appropriate amount of datasets which will be used in the learning process
of the proposed approach. Therefore, considering the unsupervised environment, these datasets
can be used to train the network that will be effective to solve complex problems (Huo et al.,
2020). However, currently there is a need for having a general, efficient and powerful learning
algorithm. This is related with the fact that currently proposed algorithms are poorly gener-
alized and especially for the deep learning methods, the memory requirements are increasing
considering their deep structure (Vicini et al., 2019). Moreover, the training datasets are not
available at the moment which is also required for better results in the future. As these datasets
are crucial in the learning scheme, biased rendering techniques are not compatible with the
nature of deep learning algorithms since they may contain inconsistencies. Therefore, dataset
generation is strictly limited with unbiased rendering techniques. Nevertheless, the capability
of these algorithms are worthwhile to investigate which is believed that such problems may be
solved as more attention is shifted towards them. Moreover, path tracing is originally unbiased
which is compatible with the deep learning dataset generation.

4 Conclusion

In this paper state-of-the-art adaptive sampling and denoising filtering approaches and a sum-
mary of the challenges in Monte Carlo denoising has been presented and discussed in detail.
As it can be seen, a general solution is not available in denoising and many models have been
proposed focusing on different effects. This paper also expresses some challenges are observed
in this field and possible solution strategies that may be followed to overcome those problems.

Although the subject has been extensively studied for over than three decades, there is still
a need of pioneering work for having more efficient renderers in the future. Especially with the
improvements in deep learning, it is believed that it will dominate the future of denoising opera-
tions. Although there are some datasets available for open access (Brummer & De Vleeschouwer,
2019), in many fields there is still a need for more datasets for further progress (Li et al., 2016;
Yong et al., 2019). Therefore, a general training database is needed to enhance developments
in this field which can contain many datasets from various fields to be used in a wide range of
applications. Such a database can be used for accurately training deep learning networks and
also may be used as the beginning point to find a general solution.
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